Introduction

Today's Talk:
- Basic site analysis and investigation
 - Geotech, Hydrology, Roadway, etc.
- Bridge designs types
 - Abutment/Foundation types
 - Bridge Deck types
- Design exercise
- Permits and review processes
- Construction issues
- Retrofits

Why Bridges?
- Bridges have better
 - Flood Control performance
 - Less back water, better conveyance, safer
 - Geomorphic flexibility
 - Maintains sediment transport, vertical movement
 - Fisheries benefits
 - Removes migration barriers, facilitates movement, provides habitat
Introduction to Bridge Design and Construction

Multi-Discipline Approach
- Structural Engineering
- Hydrology Science
- Geotechnical Engineering
- Hydraulic Engineering
- Civil Engineering
- Biologic Evaluations
- Planning and Permitting
- Geologic Evaluations

Basic Design Approach
- Investigate the site
 - Survey and geotech
- Layout bridge location
- Bridge Deck and foundation design
- Hydraulic Design
- Approach design
- Permitting
- Construction

Site Survey Data
- A GOOD SURVEY IS NEVER A WASTE OF MONEY!!
- Survey site
 - General topographic for 100 feet upstream downstream min.
 - Channel slopes
 - Long profile at 350 feet upstream and downstream
 - Make sure controlling tailwater zones are surveyed
 - Existing structure data
 - Slope, shape, dimensions, top of roadway, top of culvert, apron slopes and wing wall geometries
 - Make sure bridge approach roads are surveyed including edge of pavement, roadway crowns, super elevations
 - Map utilities and nearby structures

Site Analysis
- Site analysis:
 - Layout
 - Geotechnical Considerations
 - Hydrologic/Hydraulic Studies
 - Geomorphic Considerations
 - Biologic issues
Bridge Layout – Structure Positioning

- Right of Way
- Jurisdictional determination
- Alternative alignments
- Approaches
 - Vehicular
 - ADA Requirements
- Traffic/Roadway design

Roadway Design Issues

- Alignments
- Approach elevations
- Vertical Curves
- Will you need embankments or other retaining structures

Geotechnical Studies

- Investigative procedures
- Drilling rigs and types
- Constraints
- Report preparation

Types of Geologic Investigations

- Regional geologic and seismic conditions
- Soil conditions
- Geologic hazards
- Subsurface exploration
- Analysis
- Design recommendations
Regional Seismicity and Geology Review

- Alquist-Priolo Earthquake Fault Zone Maps
- Seismic Hazard Zone Maps
- Liquefaction
- Seismic Induced Slope Instability
- Seismic Shaking Hazard Maps
- Regional Geologic Mapping
- Regional Slope Stability Mapping

Drilling, Logging and Sampling of Boreholes

- Exploratory holes 10 feet into bedrock or required depth in soils
- Soil sampling at depth intervals to collect samples for analytical testing
- Perform Standard Penetration Test (SPT) sampling for strength characteristics (i.e. Blow Counts/ft)
- Determine groundwater levels
Drill Rigs

Type of rig depends upon many factors;
- Depth of hole,
- required rock penetration,
- potential for hole collapse,
- sampling requirements, and
- access restrictions

Drill Rigs

- Portable Augur Drill Rig
- Truck/track mounted Augur Drill Rig
- Mud or Air Rotary Drilling
- Cone Penetration Testing

Re: Specialized drilling services may take time to schedule

Types of Drilling

Reviewing Boring Logs

- Logs of test borings show summaries of data
 - Soil density
 - Soil material
 - Blow counts
 - Fewer blow counts - looser less dense material
 - High blow counts - solid denser soil conditions
 - Groundwater levels
Introduction to Bridge Design and Construction

Geotechnical Engineering Analysis
- Foundation bearing capacity
- Site seismic design criteria
- Pier Friction Capacity
- Liquefaction Analysis
- Site Geology and Soil Conditions
- Geologic Hazards

Foundation Type Feasibility Review and Laboratory Testing Request
- Review Logs of Boreholes and Determine Feasible Foundations based on subsurface conditions
- Determine Samples and Testing Protocol for Soils Laboratory

H & H Investigations
- Hydrology data
- Hydraulics analysis

Session Break

Hydrologic Analysis
- Hydrology Information
 - Gage data
 - Hydrologic models
 - Comparable basin analysis
 - Governmental sources; Caltrans, FEMA, and County Flood Control Agencies
Hydraulic Analysis

- Hydraulic analysis
 - FishXing
 - HEC-RAS
 - Alternative Hydraulic models
- Must have the ability calculate backwater impacts

Hydraulic Modeling

- HEC-RAS
 - Good design tool accepted by most if not all agencies for analysis
- Requirements:
 - Accurate topographical survey
 - Surveyed benchmarks
 - Hydraulic structures
 - Bridge soffit/roadway measurements
 - Slope

Design Water Surface elevations

- Hydraulic Design Criteria and Freeboard
 - Vary by Jurisdiction
 - 50-year with 2 ft of freeboard
 - 100-year with at least 1 ft of freeboard
 - Levees – three of freeboard
Bridge Design and Impacts

- **Goal:** shortest bridge with the least amount of impact
- **Design Criteria**
 - Passes design flows with freeboard
 - 50-year with 2 ft of freeboard
 - 100-year with at least 1 ft freeboard
 - No increase in flood threat
 - Minimizes scour and deposition

Bridge Scour

- **Event Based scour vs. Long-term scour**
 - Hydraulic Engineering Circular (HEC) 18, "Evaluating Scour at Bridges," FHWA-IP-90-017
 - Geomorphic evaluations

Geomorphetic Analysis

- Vertical & Lateral Creek Movement
- Sediment Transport
- Bankfull channel
- Low-Flow (scour line) Channel
Determining Vertical and Lateral Creek Movement

- Historic profile analysis
- Existing condition long profile analysis
- Historic air photo examination
- Historic topographic map analysis

Longitudinal Profile Analysis

- Determines average slope through the site
- Assesses offsite bed slope issues
- Places project site in context with upstream downstream areas
- May indicate bed aggradation

Historic Planform Analysis
Cache Creek near Guinda, California
Questa Engineering Corporation

Longitudinal Profile Analysis

Fall 2003
March 2005
Design Breakdown
- Foundation design
- Bridge deck design
- Channel Design

Bridge Foundation Considerations
- Required Load Capacity and Anticipated Uses
- Site Conditions & Geotechnical Investigations
- Foundation Types
 - Spread Footings
 - Driven Piles
 - Drilled Cast-In-Place Piers
- Economic Analysis
 - Capacity and Service Life versus Cost
 - Typical Construction Costs

Required Load Capacity and Anticipated Uses
- Public Trails - Pedestrian/Bicycle/Equestrian/Disabled Users
- Light-Duty - Typically Residential Automobiles/Light Trucks
- Highway Traffic - Heavy Trucks HS20-25 loads (AASHTO Load Standards)

AASHTO & Caltrans
- American Association of State Highway and Transportation Officials
 - National Association which establishes and promotes highway construction and safety standards.
- California Department of Transportation
 - Manages State Highway System
 - Issues permits for encroachment into state owned highways and properties

Typical Light-Duty Bridge Crossing Profile
Foundation Types - Spread Footings

- Relatively shallow reinforced concrete mats to distribute bridge loads over wide area of supporting soils.
- Advantages
 - Typically least expensive option
 - Minimal equipment mobilization requirements
- Disadvantages
 - Not suitable over soft or liquefiable soils
 - Minimal resistance to undermining or slope instability
 - Moderate to heavy site disruptions

Foundation Types - Driven Piles

- Tubular and Sheet Steel, Reinforced Concrete or Composite Piles driven into soils using a dropped weight or piston hammer, applied typically in marine settings.
- Advantages
 - Minimal site disruption
 - Provides support over soft or variable subgrade conditions
 - Applied in areas prone to flooding or with very soft soils
- Disadvantages
 - Requires mobilization of large equipment and materials
 - Requires minimum embedment depth into soil

Foundation Types - Drilled Cast-In-Place Piers

- Drilled holes filled with cast-in-place reinforced concrete piers.
- Advantages
 - Typically provides greatest resistance to vertical and lateral loads
 - Provides excellent resistance to scour
 - Used in steep and/or unstable slope areas
- Disadvantages
 - Typically highest cost
 - Difficult to apply in areas of shallow ground water or loose soils
 - Moderate site disruptions
Economic Analysis
• **Capacity and Service Life versus Cost**

• **Typical Cost for Light-Duty Bridges**
 - $1,000/ft for pre-fabricated steel bridges w/ wood decking
 - $2,000/ft installed including design and foundations

Concrete Box Girder
Bridge Widths

- 12 foot width lanes plus 2 feet of railing/curb
- Single lane = 18 feet, 14 feet between railings/curbs
- Two Lane = 28 feet, 24 feet between railings/curbs

Planning Level Bridge Costs

- Pedestrian Bridge construction costs in northern California
 - $125-$140 per square feet (sf) for cast in place concrete,
 - $115-$150 per sf for prefabricated bridges.
 - $1,500 per lineal foot

- Traffic Rated Bridges
 - Two Lane light to medium traffic
 - $350-$500 sf
 - Major arterial structures
 - $600-$750 sf
Introduction to Bridge Design and Construction

Permits and Approvals
- Documents needed for permitting
- Permitting procedures
- CEQA Certification
- Flood Control Public Safety Permits
- Construction implementation
- Construction management and inspection

Project Permit Documents
- Site Map
- Water of the USCOE Jurisdictional Area
- Project Description
 - Detailed
 - Alternatives examined/project justification
 - 30% design drawings
- Project Analysis
 - Technical analysis or separate back up design memorandum (H&H, Geotech, etc.)
 - Biologic Reconnaissance

Project Description
- Project Justification Site plan
- Project channel bed profiles
- Project cross section views
- Habitat enhancement features
- Limits of work
- Area of impact
 - USCOE, riparian area, vegetated area
- Determination of cut and fill quantities

Environmental Permits
- U.S. Army Corps of Engineers 404 Permit
 - Endangered Species Act Consultation
- California Department of Fish & Game Streambed Alteration Agreement
- Regional Water Quality Control Board
 - Water Quality Certification & General Stormwater Construction Permit
- Coastal Development Permit

USCOE Permits
- Reviews application and notifies National Marine Fisheries Service (NMFS) and/or US Fish and Wildlife Service (USFWS)
 - May ask for formal or informal consultation
 - May require preparation of a Biologic Opinion (BO) and/authorization for take
 - NMFS will review Fish passage analysis
Streambed Alteration Agreements

- CDFG engineering staff will review project fish passage analysis
- Must have CEQA completed to issue
- Includes impacts to riparian areas

Biological Reconnaissance

- Special-Status Species
- Existing Habitat ID and Mapping
- Proposed Habitat Mitigation
- OHWM/Wetland Delineation
- CNDDB Search

Coastal Development Permit

- Usually processed through the County
- May require architectural review
- May require separate monitoring protocols

Public Safety Permits

- County/ City Building Permits
 - Structural & Roadway Design Review
- Caltrans
 - Encroachment permits
Caltrans Encroachment Permit

- Primarily concerned with impacts to their facilities and safety
 - Reviews design storm hydrology and hydraulics
 - Erosion and bank stabilization in and around their facilities
 - Maintenance responsibility

County/City Review

- Reviews detail plans and calculations
 - Roadway design
 - Structural design
 - Geotechnical design
 - Flood control

CEQA Review

- Categorical Exemption
- Initial Study Preparation
- Mitigated Negative Declaration
- EIR/EIS
- Lead Agency
 - City or County
 - CDFG for some grant funded projects

Permit Timeline

- 6 month is likely minimum
- 1 year is not out of the question
- NMFS and USFWS have 135 days
- CDFG - 30 days
- Coastal Development Permit

Construction Factors

- Site and Channel Access
- Work Conditions
- Restricted Seasons
- Mobilization and Staging Areas
- Materials Storage Areas
- Dewatering
- Limits of Work
Construction Issues

Access & Staging

- How are you going to get to the site?
- Dewatering issues
- Do access roads need to built?
- Where will machinery move around the site?
 - Material and spoils storage
 - Maintenance and fueling areas
- Delivery truck access and traffic issues?

Construction Sequence

- Water control
- Foundation construction
 - Drilling
 - Concrete forming
- Channel demo and grading
- False work/deck forming
- Pre-stressing/curing
- Installation
- Approaches
- Erosion control

Construction Inspections

- Inspections are very important - use construction inspection forms
- Extensively photograph work progressing
- Inspection Milestones:
 - Staking and job layout
 - After clearing and grubbing, new topo may be taken to estimate quantities
 - After rough grading
 - During rock placement/willow staking
 - During LWD/in-stream structures placement
 - Check step pool elevation and depths as you go!!
 - After erosion control installation; during and after planting and irrigation installation