Introduction to Bridge Design and Construction

Part 2 - Planning and Design

Questa Engineering Corporation
Sydney Temple, P.E.

Introduction
Today's Talk:
- General Design Steps
 - Planning to Construction
 - Bridge foundation types
 - Environmental Review & Permits
 - Construction

Multi-Discipline Approach
- Structural Engineering Geomorphology
- Geotechnical Engineering Hydraulic Engineering
- Civil Engineering Biologic Evaluations
- Planning and Permitting Geologic Evaluations

Basic Design Steps
- Investigate the site
 - Survey, Geotech, Hydrology, Biology
 - Opportunities and constraints
 - Determine bridge type and location
 - 40% Design
 - Permitting
 - Final foundation and superstructure design
 - Construction drawings
 - Construction
 - Construction management

Site Survey Data
- Site Survey
 - General topography for 100 feet upstream/downstream min.
 - Channel slopes
 - Long profile at 350 feet upstream and downstream
 - Existing structure data
 - Slope, shape, dimensions, top of roadway, top of culvert, apron slopes and wing wall geometries
 - Make sure bridge approach roads are surveyed including edge of pavement, roadway crowns, super elevations
 - Map utilities and nearby structures
Site Analysis

- Site analysis:
 - Geotechnical Considerations
 - Hydrologic/Hydraulic Studies
 - Geomorphic Considerations
 - Biologic issues
 - Bridge Layout

Geotechnical Investigations

- Regional geologic and seismic conditions
- Local Soil conditions
- Local Geologic hazards
- Subsurface exploration
- Design recommendations

Subsurface Investigations

- Exploratory holes; 10 - 100+ feet
- Soil samples are collected for analytical testing
- Perform Standard Penetration Test (SPT) sampling for strength characteristics (I.e. Blow Counts/ft)
- Determines groundwater levels

Types of Drilling

- Geotechnical Reports
 - Summarize geological hazards
 - Local site conditions
 - Provide recommendations for foundation design
H & H Investigations

- Hydrology data
 - Regional source – Flood Control Agencies
 - Site specific modeling
- Hydraulics analysis
 - Governmental sources; Caltrans, FEMA, and County Flood Control Agencies
 - Complete site specific analysis

Design Water Surface Elevations

- Hydraulic Design Criteria and Freeboard
 - Vary by Jurisdiction
 - 50-year with 2 ft of freeboard
 - 100-year with at least 1 ft freeboard
 - Levees – three feet of freeboard

Geomorphetic Analysis

- Vertical & Lateral creek movement
 - Sediment transport
 - Bankfull channel
 - Low-Flow (scour line) channel
Determining Vertical and Lateral Creek Movement

- Historic profile analysis
- Existing condition long profile analysis
- Historic air photo examination
- Historic topographic map analysis

Longitudinal Profile Analysis

River Station (ft)

Fall 2003
March 2005

Historic Planform Analysis
Cache Creek near Guinda, California
Questa Engineering Corporation
Biological Reconnaissance

- Special-Status Species
- Existing Habitat ID and Mapping
- OHW/Wetland Delineation
- CNDDDB Search

Bridge Layout – Structure Positioning

- Right of Way
- Alternative alignments
- Approaches
 - ADA Requirements
- Traffic/Roadway design issues
- Utilities

Roadway Design Issues

- Alignments
- Approach elevations
- Vertical curves- approach slopes
- Will you need embankments or other retaining structures?
Introduction to Bridge Design and Construction

Bridge Widths

- Typical trail - 10 feet width
- Major trail - 12 foot width lanes plus 2 feet of railing/curb
- Single lane = 18 feet, 14 feet between railings/curbs
- Two Lane = 28 feet, 24 feet between railings/curbs

Bridge Design and Impacts

- Goal: shortest bridge with the least amount of impact
- Design Criteria
 - Passes design flows with freeboard
 - 50-year with 2 ft of freeboard
 - 100-year with at least 1 ft freeboard
 - No increase in flood threat
 - Minimizes scour and deposition

Planning Level Bridge Costs

- Pedestrian Bridge construction costs in northern California
 - $125-$140 per square feet (sf) for cast in place concrete,
 - $115-$150 per sf for prefabricated bridges,
 - $1,500 per lineal foot

- Traffic Rated Bridges
 - Two Lane light to medium traffic
 - $350-$500 sf
 - Major arterial structures
 - $600-$750 sf
Project Concept

Environmental Permits
Flood Control Public Safety Permits
CEQA Certification
Implementation

Project Permit Documents
- Site Map
- Water of the USCOE Jurisdictional Area
- Project Description
 - Detailed
 - Alternatives examined/project justification
 - 40% design drawings
- Project Analysis
 - Technical analysis or separate back up design memorandum (H&H, Geotech, etc.)
 - Biologic Reconnaissance

Project Description
- Project Justification Site plan
- Project channel bed profiles
- Project cross section views
- Habitat enhancement features
- Limits of work, Mobilization
- Area of impact
 - USCOE, riparian area, vegetated area
- Determination of cut and fill quantities

CEQA Review
- Categorical Exemption
- Initial Study Preparation
- Mitigated Negative Declaration
- EIR/EIS
- Lead Agency
 - City, County or Special District
 - State for some grant funded projects

Environmental Permits
- U.S. Army Corps of Engineers 404 Permit
 - Endangered Species Act Consultation
- California Department of Fish & Game Streamed Alteration Agreement
- Regional Water Quality Control Board
 - Water Quality Certification & General Stormwater Construction Permit
- Coastal Development Permit

USCOE Permits
- Reviews application and notifies National Marine Fisheries Service (NMFS) and/or US Fish and Wildlife Service (USFWS)
 - May ask for formal or informal consultation
 - May require preparation of a Biologic Opinion (BO) and/authorization for take
 - NMFS will review Fish passage analysis
Streambed Alteration Agreements
- CDFG staff review
- Must have CEQA completed to issue
- Includes impacts to riparian areas

Coastal Development Permit
- Usually processed through the County
- May require architectural review
- May require separate monitoring protocols

Permit Timeline
- 6 month is likely minimum
- 1 year is not out of the question
- NMFS and USFWS have 135 days
- CDFG - 30 days
- Coastal Development Permit – 6 months+

Design Breakdown
- Foundation design
- Bridge deck design
- Channel Design if needed

AASHTO & Caltrans
- American Association of State Highway and Transportation Officials
 - National Association which establishes and promotes highway construction and safety standards.
- California Department of Transportation
 - Manages State Highway System
 - Issues permits for encroachment into state owned highways and properties

Typical Light-Duty Bridge Crossing Profile
Bridge Foundation Considerations

- Required Load Capacity and Anticipated Uses
- Site Conditions & Geotechnical Investigations
- Foundation Types
 - Spread Footings
 - Driven Piles
 - Drilled Cast-In-Place Piers

Required Load Capacity and Anticipated Uses

- Public Trails - Pedestrian/Bicycle/Equestrian/Disabled Users
- Light-Duty - Typically Residential Automobiles/Light Trucks
- Highway Traffic - Heavy Trucks HS20-25 loads (AASHTO Load Standards)

Foundation Types - Spread Footings

- Relatively shallow reinforced concrete mats to distribute bridge loads over wide area of supporting soils.
- Advantages
 - Typically least expensive option
 - Minimal equipment mobilization requirements
- Disadvantages
 - Not suitable over soft or liquefiable soils
 - Minimal resistance to undermining or slope instability
 - Moderate to heavy site disruptions

Foundation Types - Driven Piles

- Tubular and Sheet Steel, Reinforced Concrete or Composite Piles driven into soils using a dropped weight or piston hammer, applied typically in marine settings.
- Advantages
 - Minimal site disruption
 - Provides support over soft or variable subgrade conditions
 - Applied in areas prone to flooding or with very soft soils
- Disadvantages
 - Requires mobilization of large equipment and materials
 - Requires minimum embedment depth into soil
Foundation Types - Drilled Cast-In-Place Piers

- Drilled holes filled with cast-in-place reinforced concrete piers.

Advantages
- Typically provides greatest resistance to vertical and lateral loads
- Provides excellent resistance to scour
- Used in steep and/or unstable slope areas

Disadvantages
- Typically highest cost
- Difficult to apply in areas of shallow ground water or loose soils
- Moderate site disruptions
County/City Review

- Reviews detail plans and calculations
 - Roadway design
 - Structural design
 - Geotechnical design
 - Flood control

Construction Drawings

- Plan set
 - Site Plan and layout
 - Foundation plans
 - Superstructure plans
 - Road or trail plans
 - Erosion Control
 - Ancillary structures

Construction Specifications

- Bidding instructions
- Work hours
- Contracting requirements
- Construction and material specifications

Construction Factors

- Site and Channel Access
- Work Conditions
- Biological monitoring
- Restricted Seasons
- Mobilization and Staging Areas
- Materials Storage Areas
- Dewatering
- Limits of Work
Construction Sequence

- Water control
- Foundation construction
 - Drilling
 - Concrete forming
- Grading
- Installation or construction
- Approach construction
- Erosion control

Contact Info

Sydney Temple
Questa Engineering Corp.
Stemple@questaec.com
(510) 236-6114 ext 220